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Abstract

We present a semi-Lagrangian method for integrating the three-dimensional incompressible Navier-
Stokes equations. We develop stable schemes of second-order accuracy in time and spectral accuracy
in space. Specifically, we employ a spectral element (Jacobi) expansion in one direction and Fourier
collocation in the other two directions. We demonstrate exponential convergence for this method, and
investigate the non-monotonic behavior of the temporal error for an exact three-dimensional solution.
We also present direct numerical simulations of a turbulent channel-flow, and demonstrate the stability
of this approach even for marginal resolution unlike its Eulerian counterpart.
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1 Introduction

High-order methods, especially spectral methods, are particularly effective in direct numerical simulations

(DNS) of turbulent flows. However, most Navier-Stokes implementations involve semi-implicit time integra-

tion that requires unreasonable small time step sizes. For example, for a flow corresponding to Reynolds

number of 10, 000, the maximum allowable time step can be at least one order of magnitude smaller than the

temporal Kolmogorov scale [21]. It can be projected that in high Reynolds number DNS there is an uneven

distribution of resolution in space and time, with the smallest spatial scale approximately matched but with

the temporal scale over-resolved by several orders of magnitude. This inefficiency of currently employed

semi-implicit schemes for DNS of inhomogeneous turbulence has been recognized before, and attempts have

been made to employ fully implicit schemes [3]. However, this requires Newton iterations and non-symmetric

solvers that render the overall approach inefficient.

Progress can be made by employing semi-Lagrangian time-discretization, which could increase signifi-

cantly the maximum allowable time step while maintaining the efficiency of symmetric solvers. This approach

has been introduced in the beginning of the 1980s [17], and the basic idea is to discretize the Lagrangian

derivative of the solution in time instead of the Eulerian derivative. The work here is an extension of the

semi-Lagrangian scheme proposed in [21] but formulated in the context of simulating turbulent flows.

The semi-Lagrangian method depends strongly on the spatial discretization. Specifically, its accuracy

is particularly sensitive to the method of backward-integration of the characteristic equation as well as

the interpolation scheme to evaluate the solution at departure points. This has been shown by Falcone &

Ferretti [5] who conducted a rigorous analysis of the stability and convergence properties of semi-Lagrangian

schemes for advection-diffusion equations. It has also been shown that the simplest semi-Lagrangian scheme

with linear interpolation is equivalent to the classical first-order upwinding scheme [15], which is excessively

dissipative (see [17] and [18]). A popular and effective choice for interpolation methods in previous works has

been the cubic spline methods [10]; see also [2]. The idea of introducing high order characteristic methods

has first been presented in [4] and it has been extended into the spectral frame in [9, 7].

An intriguing finding is that the error of semi-Lagrangian schemes in solving advection-diffusion equations

decreases as the time step increases in a certain range of parameters, and this has initially led to some

erroneous justifications [13, 14]. The analysis in [5] showed that the overall error of the semi-Lagrangian
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method is indeed not monotonic with respect to time step ∆t, and, in particular, it has the form

O(∆tk +
∆xP+1

∆t
),

where k refers to the order of backward time integration and P to the (spatial) interpolation order; similar

conclusions had been reached earlier in [12]. Another interesting result was obtained by Giraldo [6], who

combined the semi-Lagrangian approach with a spectral element discretization for the advection-diffusion

equation. He found that for polynomial order P ≥ 4 the combined scheme exhibits neither dissipation nor

dispersion errors.

The extension of the semi-Lagrangian method to the solution of Navier-Stokes equations was presented

in the pioneering work of Pironneau (1982) [16]. He demonstrated nonlinear stability of the method even

as the viscosity approaches zero. He also obtained suboptimal error estimates, which were improved later

by Süli (1988) [19]. Most of the previous analysis and numerical implementations in CFD applications

have employed the Taylor-Hood finite element and are first-order in time. In a more recent paper [1],

an error analysis was conducted for the fractional-step method for incompressible Navier-Stokes equations.

In particular, the pressure-correction version of the fractional scheme with first-order time-stepping was

analyzed and an extension to second-order was proposed but not analyzed.

In this paper, we present a semi-Lagrangian method for simulating three-dimensional incompressible

turbulent flows specifically in channel domains, extending the work in [21]. In particular, we apply a Jacobi-

based spectral element discretization along the inhomogeneous direction [8] and Fourier collocation along the

other two homogeneous directions, similar to [20]. We study in detail the dependence of the overall accuracy

upon the time step for an exact solution of the three-dimensional Navier-Stokes equations. We then present

results from a DNS of turbulence for 483 resolution that demonstrate the effectiveness of the method.

2 Formulation

2.1 Advection-Diffusion Equation

Let us first consider an advection-diffusion equation written in Eulerian form

∂φ

∂t
+ u · ∇φ = ν∇2φ, (1)
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and in semi-Lagrangian form
dφ

dt
= ν∇2φ. (2)

Unlike Lagrangian formulations, in the semi-Lagrangian formulation the computational mesh is fixed. At

each time step, a discrete set of particles arriving at the grid points is tracked backwards over a single time

step along its characteristic line up to its departure points. The solution values at the departure points

are then obtained by interpolation. For example, the second-order Crank-Nicolson scheme for the above

equation is

φn+1 − φn
d

∆t
= ν∇2(

φn+1 + φn
d

2
), (3)

dx

dt
= u(x, t), xn+1 = x(tn+1) = xa. (4)

Here φn
d denotes the value of φ at the departure points xd at time level n, and xa is the position of the

arrival points which coincide with the grid points. The characteristic equation (4) is solved backward, i.e.,

we solve for the departure point at time level n, xn
d , with the initial condition xn+1 = xa.

The departure points do not coincide with the grid points, and thus a search-interpolation procedure is

needed. Also, the overall accuracy and efficiency of the semi-Lagrangian method depends critically on both

the accuracy of backward integration as well as the accuracy of the interpolation method. In the following,

we provide some details on how to implement both algorithms.

2.2 Backward Integration

We solve equation (4) for one single time step in order to obtain xd = x(tn) by the explicit second-order

mid-point rule

x̂ = xa − ∆t

2
u(xa, t

n), (5)

xd = xa −∆t u(x̂, tn +
∆t

2
). (6)

By defining

α ≡ xa − xd,

we can re-write the explicit mid-point rule as

α = ∆t u(xa − ∆t

2
u(xa, t

n), tn +
∆t

2
). (7)
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Similarly, we employ implicit integration for equation (4) setting

x̂ = xa − ∆t

2
u(x̂, tn +

∆t

2
),

to arrive at the implicit mid-point rule

α = ∆t u(xa − α

2
, tn +

∆t

2
). (8)

This is the backward-integration algorithm used in most of previous semi-Lagrangian schemes. Although

the explicit and implicit schemes are formally of second-order, a small accuracy improvement has been

reported for the implicit scheme. Equation (8) has to be solved iteratively, but numerical experiments show

that only a few iterations are needed for convergence (typically around five). For an advection-diffusion

equation with the velocity field known analytically, the additional cost associated with the iterations is

negligible. However, for a velocity field known only in numerical form, the iteration process is costly because

each substep requires a search-interpolation procedure. Our numerical results show that the two methods give

almost identical results in practice, and for more general problems, especially for Navier-Stokes equations,

the explicit method is preferred.

2.3 Search-Interpolation Procedure

We consider a three-dimensional channel domain with spectral elements/hp along the inhomogeneous di-

rection and Fourier collocation along the two homogeneous directions (streamwise and spanwise). In its

current implementation, we first locate in which spectral element the departure point resides and perform

interpolation in modal space along all three-directions. This involves the entire Fourier expansions which is

computationally expensive. Currently, we are working on an implementation that employs a more localized

interpolation in the Fourier directions to reduce that cost.

2.4 Incompressible Navier-Stokes Equations

We consider the incompressible Navier-Stokes equations in Lagrangian form

du

dt
= −∇p+ ν∇2u, ∇ · u = 0. (9)
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We employ a stiffly-stable scheme to discretize the above equations [8]. A second-order time-discretization

corresponds to
3
2u

n+1 − 2un
d +

1
2u

n−1
d

∆t
= (−∇p+ ν∇2u)n+1, (10)

where un
d is the velocity u at the departure point x

n
d at time level t

n, and un−1
d is the velocity at the departure

point xn−1
d at time level tn−1. The departure point xn

d is obtained by solving

dx

dt
= un+1/2(x, t), x(tn+1) = xa

and also

un+1/2 = 3/2un − 1/2un−1.

The point xn−1
d is obtained by solving

dx

dt
= un(x, t), x(tn+1) = xa.

By using the above characteristic equations, the resulting scheme is second-order accurate in time.

Specifically, for computational convenience we use the following three substeps to solve equation (10)

û− 2un
d +

1
2u

n−1
d

∆t
= 0, (11)

ˆ̂u− û

∆t
= −∇pn+1, (12)

3
2u

n+1 − ˆ̂u
∆t

= ν∇2un+1. (13)

The discrete divergence-free condition results in a consistent Poisson equation for the pressure, i.e.

∇2pn+1 =
1
∆t

∇ · û,

with accurate pressure boundary conditions of the form [8]

∂p

∂n
= −ν · [û+∇× ωn+1],

where n is the unit normal, and ω is the vorticity.
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3 Numerical Results

3.1 Convergence Rate

We first present results from comparisons with an exact three-dimensional solution to the incompressible

Navier-Stokes equations, given by

u = sin(mx) cos(ly) cos(nz)e−t/Re

v = −m+ n

l
cos(mx) sin(ly) cos(nz)e−t/Re

w = cos(mx) cos(ly) sin(nz)e−t/Re

where Re is the Reynolds number and m, l, n define the wavenumbers along the three directions. We

determine the pressure p(x, y, z, t) from the Navier-Stokes equations (assuming that no forcing is applied in

the y-direction, i.e. fy = 0) to be

p(x, y, z, t) = −m+ n

l2Re
(m2 + l2 + n2 − 1) cos(mx) cos(ly) cos(nz)e−t/Re +

m(m+ n)
4l2

sin2(mx) cos(2ly) cos2(nz)e−2t/Re +

(m+ n)2

4l2
cos2(mx) cos(2ly) cos2(nz)e−2t/Re +

n(m+ n)
4l2

cos2(mx) cos(2ly) sin2(nz)e−2t/Re.

With this expression for pressure we can now evaluate the extra forces along the two other directions fx

and fz, which are computed so that the above is an exact Navier-Stokes solution. The domain used was a

cube of size 2π3.

We first tested that exponential convergence is realized with errors almost identical to the Eulerian

approach. In figure 1 we plot the L2 error for all three components of velocity for wavenumbers m = l = n =

1. Only one element was used along the y-direction for this solution, with P denoting the Jacobi polynomial

order. Similar results hold for a multi-element discretization. Also, the number of collocation points along

the two Fourier directions is set to M = N = P for this case. The Reynolds number was set to Re = 1 and

the final time of integration was T = 1. The non-monotonic behavior of the temporal error obtained by the

theoretical analysis for advection-diffusion equations is

O(∆t2 +
∆sP+1

∆t
),
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Figure 1: Errors versus polynomial order for the exact three-dimensional solution (Re = 1).

where ∆s is an equivalent grid spacing. This behavior is realized in our computations of the exact Navier-

Stokes solutions, as shown in figure 2. We note that the u and w velocity components correspond to identical

curves but the normal velocity component v exhibits a different behavior. This different behavior can be

attributed to the fractional stepping scheme and it is similar to the Eulerian approach. If we increase the

resolution along the y-direction only from P = 6 to P = 8 (figure 3), we observe a large reduction in the

error for all components but also a different qualitative trend. This is consistent with the aforementioned

error estimate and the fact that exponential convergence is achieved. The results in both plots suggest that

both error terms are comparable for this resolution.

At higher resolution, the first term in the error dominates and this behavior is similar to the one obtained

in the Eulerian approach. A comparison of the two approaches is shown in figure 4; for the semi-Lagrangian

scheme the L2 error is slightly larger compared to the Eulerian scheme. We also see from figure 4 that a

second-order time-accuracy is obtained. In figure 5 we plot the errors for Reynolds number Re = 106 and

final time of integration T = 1. We see that the same non-monotonic behavior is obtained as in the low

Reynolds number case Re = 1 studied in the previous figures.
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Figure 2: Errors versus time step for the exact three-dimensional solution; resolution P = 6 = M = N .
(Re = 1).
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Figure 3: Errors versus time step for the exact three-dimensional solution; resolution P = 8 andM = N = 6.
(Re = 1).

9



Dt
0.01 0.02 0.03

5E-06

1E-05

1.5E-05

L
L

2

2

(v) SL
(v) EU

1

2

Figure 4: Comparison of Eulerian (EU) and semi-Lagrangian schemes (SL). Errors versus time step for the
exact three-dimensional solution; resolution P =M = N = 12. (Re = 1).
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Figure 5: Reynolds number Re = 106. Errors versus time step for the exact three-dimensional solution;
resolution P =M = N = 12.
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3.2 DNS of Turbulent Channel-Flow

Here we perform direct numerical simulations of turbulent channel-flow in a periodic domain (in x- and

z-directions) of size (x,y,z): 2π×2×2π. The Reynolds number based on the half-channel width and the wall

shear velocity is Re∗ = 116. We interpolated an initial turbulent 643 field to a 483 field and ran the simulation

for several eddy turn-over times (50 convective units) with the de-aliased Eulerian code. We note here that

the corresponding Eulerian simulation without de-aliasing was unstable even at very small time steps. We

then collected statistics for T = 5 and T = 20 convective units for the Eulerian simulation; a time step of

∆t = 1/200 was employed. The semi-Lagrangian simulation was performed with time step ∆t = 1/20, and

statistics were gathered for total time T = 20 convective units. Of course, no de-aliasing is required in this

case. In wall units the time step used in the semi-Lagrangian method is ∆t+ = ∆t · u2
τ/ν = 0.2645, which is

smaller than the Kolmogorov time scale; uτ is the wall shear velocity. The Kolmogorov scale was estimated

at y+ = 5 to be τ+
K =

√
u4

τ/(εν) ≈ 0.33 using an approximate value for the dissipation rate ε ≈ 0.10 [11]. We

note here that the time Kolmogorov scale in [3] was overestimated; the value of 2.4 (in wall units) reported

would correspond to a value of dissipation rate of ε ≈ 0.002 compared to about 0.16 at the wall [11].

A comparison of the mean velocity profile is shown in figure 6; no significant differences are observed

despite the very large time step employed in the semi-Lagrangian simulation. However, some differences are

present in figure 7, where we plot the rms values of all three velocity components for both approaches. The

more pronounced differences correspond to the streamwise turbulent intensity, which mat be associated with

time-averaging errors. To evaluate this we compare these profiles obtained by averaging also over T = 5 and

we, indeed, obtain noticeable differences as shown in figure 8.

4 Summary

We have developed a spectral semi-Lagrangian algorithm for simulating turbulent channel flow, and have

demonstrated its accuracy and its stability. The overall error is comparable to the Eulerian scheme but

the stability is greatly enhanced. However, in its current implementation the method employs global in-

terpolation, which makes it computationally very expensive. Specifically, the method is approximately ten

times slower than the Eulerian method for the 483 simulation presented, so with the gain factor of ten (for

the semi-Lagrangian) in the time step, the overall simulation cost is the same for both methods. Better
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simulation and the dash line to the semi-Lagrangian simulation. Reynolds number R∗ = 116.
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Figure 8: Comparison of turbulence intensities from the Eulerian 483 DNS. The solid line corresponds to
averaging over T = 40 and the dash line to averaging over T = 5; Reynolds number R∗ = 116.

local interpolation procedures need to be implemented that do not compromise accuracy while providing a

speed-up factor that will make this method more efficient than the Eulerian approach for DNS of turbulence.

This has been done in the context of fully three-dimensional geometries, where hexahedra and tetrahedra

spectral/hp elements form a natural framework for local Lagrangian interpolation [21]. In that case a speed-

up factor of about five (on average) was achieved in favor of the semi-Lagrangian method. A similar domain

decomposition scheme should also be adopted for the channel geometry; we will report such work as well as

practical high Reynolds number DNS in future publications.
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